The Basics Of Flybarless RC Helicopters & Electronic Stabilization

Flybarless Rotor Head

Flying with a flybarless head also called an FBL rotor head on RC helicopters is nothing new for the larger scale crowd as many big scale birds or scale birds with multi bladed rotor heads have been around for years.

They were sensitive and difficult to control, not to mention the ballooning issues in fast forward flight (where the bird would pitch up if you didn’t hold in forward cyclic) was a constant workload.

Most average people in the hobby (sport, general, semi scale, 3D, and certainly beginners) would have never even considered flying an RC helicopter with no flybar stabilization. Well, those days are gone thanks once again to the huge improvements in electronic miniaturization and gyro / accelerometer technology.

Going flybarless is now a reality and has some wonderful benefits over the trusty old flybar for all types of RC helicopter flying.

With costs coming down all the time and the systems getting easier to configure and setup, FBL systems are now immensely popular. Most RC helicopter manufacturers are offering all their RC helicopter kits in flybarless versions.

In fact, flybared machines are getting exceedingly difficult to find these days - almost impossible actually. Even the entry level/low cost micro segment are embracing this technology such as Blade with all their single rotor micro sized helicopters sporting electronic flybarless stabilization.


What Does A Flybarless System Consist Of?

Bavarian Demon 3X Flybarless SystemBavarian Demon 3X Flybarless System With Built In Sensors

Most electronic flybar systems consist of the gyro sensors and the mixing/control unit/servo Bus. These can be combined in one unit as shown here with Bavarian Demon's 3X electronic flybar system, or they can have the FBL sensor separated like on Mikado's V-Bar 3 axis gyro system.


Mikado VBar FBL Unit With Remote Sensor

Combined systems generally give neater and easier installs, whereas systems with "remote FBL senors" give you the flexibility to mount the sensor in various areas on-board the helicopter.



Micro Heli Flybarless Combination Control Board

All micro sized helicopters with electronic stabilization will generally have a combination control unit that incorporates the receiver, ESC, BEC, and the flybarless stabilization gyros as shown here with the control board from a Blade 130X helicopter.

The other part of a FBL system is naturally the head itself. There are various designs of collective pitch FBL rotor heads but the 3 main types I have listed below (I'm just showing two bladed heads, not multi since I have limited experience with multi and am all for keeping it that way). The main thing to note on all examples however is there is no flybar.

Non-Integrated Washout FBL Head
Pin It

First up is the non integrated washout type.

This design uses a washout (also know as a swash driver or swash follower) that is a stand alone unit (circled in green). It is clamped onto the mast to transmit rotational forces to the upper half of the swashplate to keep it correctly phased with the rotor head.


Integrated Washout FBL Head
Pin It

Next is the integrated washout type FBL head.

This design eliminates the washout/driver/follower base and places the washout arms directly on the lower part of the head block (circled in green). The three advantages with this design over the separate washout is setup/head build is easier since you don't have to mess with washout height setting or angle phase.

Parts count is down slightly and the mast can usually be shortened a bit to bring the rotor disc down closer to the helicopter's center of mass. In my opinion, from a purely mechanical workings point of view, this is the overall best design of all three; but that is just my 2 cents.

DFC Flybarless Head
Pin It

Last up is the DFC or Driverless head.

No green circle in this photo because the washout (swash driver) has been eliminated. I have an entire write-up on DFC / Driverless and encourage you to click on that link to read about DFC if you don't fully understand how it works and some issues to be aware of with it.


Best Flybarless System?

Click above link to be taken to my "Best Flybarless System page".


How Do Flybarless Systems Work?

First off to understand how a FLB system works you need to know how and what a flybar does. My page here on flybars and head types covers that in detail, but a very simple explanation of flybar function is to add stabilization to the rotor disc by automatically changing the cyclic pitch angles of the rotor blades to help improve cyclic stability and make cyclic control much more manageable.

As the name suggests, flybarless (FBL) does away with the flybar and with the help of electronic stabilization systems, "virtually" replaces the flybar (why they are also called “virtual” or "electronic flybars"). Once again we owe this to the scale boys and girls since they were really the ones to first experiment with electronic stabilization systems on their no flybar birds. I remember reading several articles a number of years back when solid state heading lock gyros were first coming on the market – the Futaba GY240 to be exact.

More and more scale fliers using scale flybarless heads were now putting not only a tail gyro in their birds to detect and correct for unwanted yaw movement; but they were also installing two more gyros mounted vertically to pick up the pitching and rolling movement of the heli (the head gyros).

The aileron (cyclic roll) servo was plugged into the gyro that detected roll, and the elevator servo (cyclic pitch) was plugged into gyro that detected pitch. Now when the heli would pitch forward for example the gyro that detected pitching movement would send a command to the elevator (cyclic pitch) servo to have it tilt the swash backwards to automatically bring the bird back into level flight.

3 Axis Flybarless Sensor Unit

This is the basic principle of how all electronic flybars operate and as seen in the picture to the right of a typical flybarless sensor that has the 3 solid state gyros oriented within the sensor just as if 3 separate tail gyros were used to detect yaw (tail), pitch, & roll (head). The vast majority of these FBL gyros use a form of PID control loop algorithms (link takes you to a very good PID Basics article submitted by one of my loyal visitors).

The same cyclic pitch changes that the mechanical flybar would impart to the main rotor blades are now done by the two head gyro sensors that detect the pitch and roll attitude of the heli and then move the servos to tilt the swash to make the precise and quick cyclic changes.

You can see this with any FBL setup that uses an electronic stabilization system and it is actually how you test to confirm the system is working properly. If you are holding the bird and tilt it forward, you will see the swashplate tilt backwards. If you tilt the bird left, the swash will tilt right.


How Does Flybarless Feel?

One of the most frequently asked e-mail FBL questions I get is "how does it feel or fly compared to a flybar". Well it is quite hard to explain in words but the heli "feels" more locked in. By that, I mean it tracks better while in flight like it's flying on an invisible set of rails. For example, with a flybar bird when you pitch the nose forward to get the bird into a fast forward flight direction, if you center your forward cyclic stick the heli will gradually slow as the flybar slowly tracks back into a horizontal plane causing the main rotors to do the same. With an electronic flybar, the bird will stay pitched forward in the exact same attitude after you center your cyclic and you don’t have to keep holding in a little forward cyclic to keep it tilted at the same forward pitch angle.

This actually makes a lot of sense when you consider the same heading lock gyro technology that is used in the tail is also now being used for your cyclic. If you pitch the bird forward at a 30 degree angle – it will lock on that flight path more or less until you give a cyclic command to do different making cyclic stick counter corrections more pronounced. Now that is a very simplified explanation of what it feels like. Depending on the setup and in many cases how the electronic stabilization is configured/programmed, you can vary the feeling quite a bit to the point they will mimic mechanical flybar response fairly accurately. Another way is to say FBL feels more like a simulator heli in some respects – but again it depends on the specific flybarless system you are using and how it is configured/programmed.

Hovering is less dramatic of a "change in feel". If you have the cyclic gains set right – the birds can hold very still and usually don't require the same level of cyclic correction from the pilot to remain perfectly steady in a hover as a flybar but do require a little more pronounced cyclic counter corrections as I just mentioned. You still have to actively pilot them however, it is not hands off hovering by any means! 

Honestly, (with a larger heli anyways), hovering either flybar or flybarless feels very similar and there is not too much difference in the feel. A good quality & well setup flybar bird with fairly heavy paddles can be every bit as stable as the same heli with a flybarless system. I know I have had some perfectly setup and trimmed out flybared machines over the years that could hold a hands off hover for up to 10 seconds in zero wind conditions which is just as good or even better than any FBL heli I currently own. Anyone who tells you a flybar heli is not as stable in a hover, simply has never experienced flying a top end flybar machine. Again, that applies to larger RC helicotpers (say 500 and up) and in zero wind conditions. The smaller the heli and the windier it is, the more FBL systems help stabilize the hover -  no question. 

Flybar vs Flybarless - Who's The Winner?Flybar vs Flybarless - Who's The Winner?

What Are The Benefits Of Flybarless?

As I was just mentioning – performance is a big one! Without the added drag of a flybar and the paddles, not to mention a certain amount of extra weight in all the flybar head hardware, there is a noticeable increase in power & performance. For electric power, this also equates to slightly longer flight times. Overall flight speed is also up (again due to a cleaner head and less drag off the flybar). Only because of flybarless, are we seeing speed specific RC helicopters creeping up on the illusive 300 KPH (190 MPH) mark. Cyclic input is more immediate and less washed out feeling. The birds fly so locked in feeling and they track through the sky with amazing precision - like they are on rails.

The other obvious advantage is the reduction in head hardware and parts count making the head build process faster/easier and crash damage both less costly, and in some cases less damaging. You are basically eliminating not only the flybar and paddles, but also the flybar mixing cage assembly along with the washout base guide pins on the head and usually 4 pushrods.

In stark comparison, a pure Bell rotor head seems almost naked with only the head, the washout, and two single pushrods (for a two bladed rotor head) that go from the swashplate up to the two main blade holders.

Flybared RC Helicopter Rotor Head


This picture on the right is of a conventional mechanical flybar rotor head (Hiller type head) - lots of components when compared to the picture of the flybarless Bell type rotor head at the top of this page.

Flybars also tend to eat up tail booms and canopies in most respectable crashes. Eliminating that long piece of steel with heavy paddles on each end twisting and flopping about like some angry ball & chain while your bird is frantically dancing around doing the "funky chicken" usually means less damage. You may come away with only a bent main shaft, head axle/feathering shaft, and fragmented rotor blades – if you’re lucky.

Tiny micro collective pitch helis like the Blade mCPx, 130X, and Nano, are only possible because of their FBL AS3X electronic stabilization systems. A complicated Bell/Hiller mixed flybar/head and associated components would be so tiny and fragile, it would not be practical to use on a micro not to mention nearly impossible to work on for all but skilled Swiss watch makers. On top of that, micro flybarless systems are what keep such tiny collective pitch helis somewhat predictable & stable reacting more like larger RC helicopters.

What about looks? Yep, that's after all why I decided to get a FBL system in the first place, to make a scale bird look better – unfortunately the performance benefits won out in the end! Even if scale is not your cup of tea, a flybarless head looks good – clean and simple.

FBL Rotor HeadFBL Rotor Head

Flybarless Rescue Mode

The latest feature offered in a few flybarless stabilization systems is "rescue" or "save" mode which will level out the heli or put it back into an upright orientation when activated by the pilot. Moreover, some systems feature a "horizon mode" or "self-leveling mode" that can make a collective pitch heli behave like a stable coaxial, while not allowing it to pitch or roll past a certain angle .

The BavarianDemon 3SX, MSH Brain/Ikon, and Skookum SK 720 are three such examples where you can program in a maximum amount of roll or pitch angle off the fixed horizon level and the heli will never pitch or roll past those limits. Besides helping beginners, this feature is also helpful for aerial photography & video applications. 


What About FBL Downsides/Disadvantages?

No, nothing is perfect and a virtual flybar is no exception.

1. COST

Cost is the biggest one (talking regular size birds here, not micros), but the differences in prices are coming down all the time. I can see the day when both versions (flybar & flybarless) are pretty much on par with each other. In fact, we are pretty much there now!

One thing I haven’t mentioned yet is pretty much every FBL system on the market now also incorporates the tail gyro as well as the head gyros. This means you don’t need to purchase a separate tail gyro and that money now goes towards the flybarless system. 

2. INCREASED SERVO DEMANDS

You will however need good high quality, high speed, and high torque digital servos for most FBL systems. Remember, the same heading hold gyro technology that is used in the tail rotor gyro is now being used with your cyclic/collective servos and therefore for the entire system to function correctly, it requires fast response times.


If you recall from the flybar page I linked to earlier, one of the other important functions of the flybar is to take some of the load off the swashplate servos. With no flybar, the servos are doing 100% of the workload to move the main rotors blades so they have to be powerful enough.

In addition to that, the servos are not only working harder, they are also working more. They are now responsible for all the little movement corrections to stabilize the helicopter that the flybar used to do. You really notice this extra work load on micro helicopters that use linear servos. The flybared versions have/had longer servo life than the FBL versions; primarily because of how much the servos have to work to stabilize the helicopter.

Most intermediate to advanced RC heli pilots will already be using good strong & fairly fast digital servos on our swashplates, but definitely double check the specs on your electronic FBL system to make sure your servos meet the speed and torque requirements, not to mention the higher power loads these servos will be pulling. This is also why long lived brushless digital servos are now becoming very popular with many RC heli hobbyists as they are very well suited to the high FBL workload (on larger RC helicopters anyways). 

3. FLYBARLESS SETUP & TUNING

Setup can and usually is more complicated on a flybarless heli when compared to a flybared one. In the video section below, the first video I show will give you a fairly good primer on what is involved.

For a little background on this topic, my very first FBL unit was a HeliCommand Rigid flybarless system. I used it in my Bergen Intrepid turbine helicopter and it was a nightmare to setup correctly for my first introduction to FBL.

It literally took me weeks/months of experimenting to get it where I somewhat liked how it responded and felt. Thankfully, the setup wizards have improved a great deal over the past several years and are getting easier to configure and use. No question however, they still take a fair amount of understanding.

4. RELIABILITY

This was my main concern with electronic stabilization. Mechanical flybars have been around for years and are proven. Sure there are more mechanical moving parts that could loosen, wear, or even come flying off the bird if you are not looking after things. However, they would almost always give you warning signs when something was worn out and rarely would it cause a total loss of control unless you ignored it for a few more flights.

Mechanical Flybars are for the lack of a better term - more or less goof proof!

Electronics on the other hand... They can fail or hiccup due to a poor connection, low voltage, bad solder joint, failed component, loose gyro sensor, etc.  Again, not something to dwell on and face it, when was the last time one of your tail gyros failed in mid air? That is the question I ask myself when I’m looking for reliability reassurance as I spool up.

UPDATE: In the past 9 years now of flying with FBL, I have yet to have a FBL related crash. I have certainly experienced some funny & weird stabilization characteristics, stabilization glitches, poor FBL programming setup/tuning on my part, and a firmware download blunder that almost drove one of my 600's tail first into the ground (that was certainly a change of underwear moment); but no all out FBL in flight failures. I guess the reliability fear can now be put to rest (knock on wood).

Lastly (as I just touched on causing my underwear change) there is firmware/software updates. If you really hate performing software updates on stuff, flybarless may not be for you (at least with the more advanced higher end systems)...

It seems updates are as much part of FBL systems these days as is correct setup. The nice thing is with the internet at our fingertips, there are generally many tutorials on the updates, what they do, and suggested settings to at least point you in the right direction. 


Should A Beginner Get A Flybarless RC Helicopter?

Okay, another very popular question I get asked almost daily that requires a fairly complicated and long answer! The simple answer is – yes, no, maybe... As you see – I don't have a simple answer. It depends on the person, what they are flying, how they are learning, and of course what flybarless system they are using.

Setup as I said can also be more difficult/involved seeing that not only do you have to understand the programming/adjustment of the flybarless system, but on top of that, most require that you are able to at least hover and fly some simple circuits to tune them correctly.

If you have someone with FBL experience to help you out or are getting one on one lessons from an instructor who could setup the system & gains properly, then that would certainly be okay and is a great/best option.

To really put this "difficult setup" issue in perspective, think of tail gyro setup. This alone can be very difficult for a newbie to grasp and get their head around. Flybarless essentially adds two more gyros to the mix and anywhere from a few to well over a few dozen other parameters to set correctly - much of it all abstract. Mechanical setup (at least level swashplate recording) has to be nearly perfect as well. In short, it's less forgiving to less than perfect setup than a flybar in most cases.

Some FBL systems also do very funny things when training gear is attached or while performing ground handling exercises. Just like a heading lock tail gyro that can get confused while on the ground from either vibration or command input induced feedback, the two cyclic gyros can also get confused from training gear oscillations or get stuck in a feedback loop while the heli can't move freely as it does once airborne.

When this happens the swashplate can be tilted far over even though your cyclic stick is centered. As you can imagine, this can cause some excitement during take off or even after a landing during the spool down.

I only say some, not all and this has become less & less of a problem with today's newer FBL units and/or updated firmware version.

If you have watched the nose-in hovering video lesson I have on day 10 of the flight school, you will notice I'm flying a flybarless Trex 600ESP with the Align 3G system and with training gear on. It worked perfectly fine and reacted almost the same as the flybar version while performing ground handling exercises.

Most systems will give warnings if training gear should not be used, so take that into account if you have your heart set on learning on a flybarless machine - make sure you know the flybarless system will function okay with training gear in place.

Lastly, some (not all) virtual flybar systems offer increased performance and crisper more reactive cyclic control. For a beginner, this is generally not what you want or need. There is a reason soft head dampening and lower head speeds are recommended for beginners – so they don’t over control the cyclic.

Most flybarless heads are set-up with stiff dampening and require faster head speeds to work correctly; not all, and it depends on the system as most now can be tamed down to be less reactive and very beginner friendly when it comes to agility settings.

I've also been seeing a lot of misinformation lately that states things like a flybarless heli with electronic stabilization is easier for a beginner to learn on and in most cases that is just not true. FBL feels different, but it's certainly not easier in most cases not to mention some training gear compatibility issues. So watch out for all the "easy to learn on" flybarless hype right now - there's a lot of it!

There are of course exceptions to this with units such as the MSH Brain/Ikon, Bavarian Demon V.2, and Skookum SK 720 that have beginner stabilization features); or full on GPS autopilot FBL systems such as DJI's Naza-H or WooKong H. The only way a flybarless stabilization system is truly easier to fly for a beginner over a conventional mechanical flybar is when they have the aforementioned "easy beginner mode" or hands off "GPS autopilot" features.

The learning curve for a beginner getting into collective pitch is already steep, some flybarless systems can push that curve to near vertical! Just keep all that in mind when deciding between flybar vs FBL or even a certain FBL system.

Click Image of eBook For More Information

My Swashplate Setup, Levelling, & FBL Configuration eBook goes over much of FBL setup & tuning, so if you can't get any help locally, you may be interested in it. If not only will help you out with the setup & tuning, it shows you what's involved so you have a good idea if FBL is for you.

In the end, it's the individual who is best suited to decide if they want to start on a flybar or FBL. As I said, most people I talk to find the flybar easier at first from an understanding and workability standpoint; but find flybarless superior after they have learned the basics. You may or may not fall into that category.

If you wish to learn more about specific FBL systems, more material is covered on my "Best Flybarless System" page.


Flybarless Conclusion

To conclude, I will leave you with 4 flybarless videos.

First up is a detailed walk through of the Skookum 720 Setup Wizard. I specifically chose this video series because they will give you a really good understanding of just what is involved in basic flybarless system configuration programming.

I felt the Skookum 720 wizard was a good example because it's not the easiest, nor is it the hardest. Every system of course has a unique wizard, parameters to set, and ways to set them; but again, the SK-720 video here is a decent all round primer.

In other words, it should give you a solid understanding of what is involved in most of these systems to get them configured correctly allowing you to judge if you are ready to tackle FBL configuration on your own, get help from an experienced FBL flier, or maybe stick with the good old flybar for now.

Next we have Alan Szabo Jr. putting both the Trex 700E DFC Speed and the Align GPro through the paces. Impressive piro-compensation!

Here's the BavarianDemon/HeliCommand 3SX showing the "rescue mode" in operation...

Last up is DJI's Naza-H in GPS hold - hands off rock solid hover...

15% OFF SALE

Click Here for More Information

Add to Cart View Cart

YouTube Channel

Click To My YouTube Channel

Social


More Helpful RC Helicopter
eBooks

Beginner's Guide To Flying RC Helicopters

Click Image For More Details

Perfect For Beginners Brand New To RC Helicopters.
20% OFF SALE

Click Here for More Information

Add to CartView Cart

Swash Setup, Leveling & FBL Configuration

Click Image of eBook For More Information

A Great Resource For All CP RC Helicopters With eCCPM Swashplates.

Click Here for More Information

Add to Cart View Cart

Getting The Most Out Of Your mSR/X & 120SR

Click Image For Details

A Very Popular eBook for mSR/x & 120SR Owners.
50% OFF SALE

Click Here for More Information

Add to CartView Cart

How To Build Training Gear

Click Image For Details

Have Fun & Save Money By Building Your Own RC Helicopter Training Gear.

Click Here for More Information

Add to Cart View Cart

Beginners Guides Combo Deal

Click Image For More Details

Interested In RC Airplanes Too? Save Money With The Beginner's Combo Package.

Click Here for More Information

Good Beginner RC Helicopters & Quadrotors

RC Heli Magazine